

Mars Science Helicopter Mid-Year Review

NASA Ames Research Center Activities

Wayne Johnson March 2020

Mars Science Helicopter — NASA Ames Activities

- NASA Ames Aeromechanics Branch Tasks for MSH
 - Explore aircraft sizing and packaging for MSH
 - Define baseline rotor designs for future helicopters on Mars
- Team
 - NASA Ames Research Center
 - Wayne Johnson, Shannah Withrow-Maser, Larry Young, Carlos Malpica, Witold Koning
 - Winnie Kuang, Mireille Fehler, Allysa Tuano, Athena Chan, Malorie Travis, Siobhan Whittle, Noah Del Coro, Kaitlin O'Dell, Hima Patel, Cuyler Dull, Asa Palmer
 - Alfred Gessow Rotorcraft Center, University of Maryland
 - Prof. Anubhay Datta
 - Lex Chi, Ravi Lumba, Daniel Escobar
- Documentation of work
 - NASA TP 2020-220485, "Mars Science Helicopter Conceptual Design" to be published March 2020

NASA Ames Aeromechanics Branch Tasks for MSH

- Initial Designs (March 2019)
 - Useful (but not too hard) mission, packaging constraint => Coaxial and Hexacopter
 - Sizing with low Re airfoils, weights calibrated to MH, JPL battery technology forecast
 - Structural design and flight dynamics => feasible aircraft configurations
- Design Refinements
 - Packaging
 - MSH in Viking aeroshell; small MSH hexacopter in Pathfinder lander
 - Rotor blade aerodynamic optimization
 - Improved rotor performance, higher Mach numbers feasible
 - Structural analysis: Inboard thickness requirement, rotor weight estimate
 - Coaxial and hexacopter design update
 - Based on improved performance with optimized airfoils
 - Double range and hover time for same gross weight
 - Designs for representative Mars sites
 - Demonstrate robustness of Mars Science Helicopter concept
 - Exploration of limits of design assumptions
 - Potential capability of Mars Science Helicopter
 - Including application of improved design features to MH-size helicopter

Initial Sizing of MSH

- Initial design mission: useful science but not too hard
 - Payload = 2.02 kg
 - Jezero Crater in the spring:
 0.015 kg/m³, –50°C

- Mars helicopter sizing spreadsheet (calibrated to MH)
 - Packaging: constrained to 2.5m diameter
- Two configurations: weight about 20 kg
 - Coaxial helicopter (radius = 1.25 m)
 - Legacy (MH) configuration
 - Concern: flight dynamics
 - Hexacopter (radius = 0.64 m)
 - Good performance (more disk area),
 operate with failed motor, flight dynamics
 - · Concern: weight of airframe

NDARC Sizing of MSH

- NDARC (NASA Design and Analysis of Rotorcraft)
 - Detailed performance models (rotor, battery, motor), detailed mission analysis
 - Rotor: Circular arc airfoils for low Reynolds number of Mars
 - Better airfoil L/D => higher efficiency, lower power
 - Better stall => higher maximum thrust
 - Weight: calibrated to MH
 - Battery: JPL technology forecast

Design Variables

- Design $C_T/\sigma = 0.11$ (MH + 10% for airfoil)
- Hover tip Mach = 0.7 (MH experience, airfoil calculations)
- Flight speed = 30 m/s (min power, assume enabled by nav system)

Designs:

- Coaxial helicopter: rotor radius 1.25 m, weight 18.0 kg, power 3.2 kW, battery 128 Ah, rotor solidity = 0.310
- Hexacopter: rotor radius 0.64 m, weight 17.7 kg, power 3.3 kW,
 battery 113 Ah, rotor solidity = 0.193

Structural Design and Flight Dynamics

- Preliminary blade structural analysis (University of Maryland)
 - Design to target flap frequency and blade weight
- Flight dynamics and control (Grip and Malpica)
 - Control bandwidth limited by low damped flap mode of blade
 - Regressive flap mode for coaxial (cyclic control)
 - Coning flap mode for hexacopter (collective or rpm control)
- Feasible aircraft configuration for Mars Science Helicopter: Hexacopter, with rotational fold
 - High-gain control possible with either collective or rpm control
- Difficult to design larger coaxial helicopter for Mars that will meet control requirements
 - Coaxial configuration would be feasible if have sufficient mechanical or structural damping of flap mode
 - Or if can design lightweight blades with very high flap stiffness

Packaging for Mars

- Entry, descent, and landing (EDL) system needed to get to surface of Mars
 - Initial sizing based on 2.5 m diameter constraint
 - New aeroshell and lander could be developed for MSH
 - Likely project efficiencies if existing design can be used

Pathfinder 1997, Diameter 2.65 m

Viking 1976, Diameter 3.505m

Mars Science Lab 2012, Diameter 4.5 m

Hexacopter (R=0.64 m) with rotating fold fits in Pathfinder aeroshell, but not in

Pathfinder petal lander

Packaging for Mars

- Designed two hexacopters with smaller rotors, to fit in Pathfinder tetrahedral petal lander
 - Higher weight, power, and energy; less growth capability
- Fold arms: Radius=0.50 m
 - 19.1 kg, 3.5 kW
 - rotor solidity=0.25

- Also scissor blades: Radius=0.58 m
 - 18.0 kg, 2.9 kW
 - rotor solidity=0.176

- Still volume in lander for other payload or science applications
- Larger aeroshells allow larger rotorcraft

Rotor Blade Aerodynamic Optimization

- Optimized airfoil shapes for unique environment of a second-generation Mars rotorcraft
 - Double edged plate best outboard
 - Thickness-constrained diamond inboard
- Optimized planform and twist

- 5% thick outboard, 15% thick inboard
- For more structural design options
- Initial structural analysis and free vibration mode calculation (University of Maryland)
 - For optimized blade aerodynamic shapes
 - Confirmed can meet frequency and weight targets for hexacopter blade, with acceptable stress/strain levels

Single Rotor Performance

- Optimized airfoils
 - Hover: increased peak figure of merit, lower power, better stall behavior
 - Forward flight: lower power at fixed flight speed
- No evidence of drag divergence (to M_{at} = 0.95)
- Conclude can increase design C_T/σ , increase tip speed

Mars Science Helicopter Design Update

- Model and parameter changes
 - Rotor performance model based on optimized aerodynamics
 - Lower power in hover and forward flight
 - Increased design blade loading to $C_T/\sigma = 0.115$
 - Increased tip Mach number to $M_{tip} = 0.80$
 - Reduces blade area => reduced structural weight => can increase battery weight => more mission capability
- Updated designs
 - Coaxial helicopter: 19.3 kg, 3.6 kW, 225 Ah, rotor solidity=0.244
 - Hexacopter: 17.7 kg, 2.8 kW, 172 Ah, rotor solidity=0.142
 - With greater operational capability: 2 km, 4.5 min hover
- These updated designs established MSH feasibility
- Next explored possible capabilities of MSH
 - Beyond the initial atmosphere, payload, and mission requirements

Designs for Representative Mars Sites

- JPL identified three representative Mars landing sites (examples, not site recommendations)
 - Atmospheric conditions depend on location (latitude, longitude, elevation) and time of day & year
 - Weight and performance depend on atmospheric density and payload
- Example: Palikir Crater
 - Payload 2.1 kg
 - Aircraft 21.0 kg,3.8 kW, 236 Ah,rotor solidity=0.198

- Results demonstrated robustness of hexacopter concept
 - Substantial capability even with updated design (2 kg payload, density = 0.015 kg/m³)

Exploration of Limits of Design Assumptions

- Need enough confidence in design assumptions to fix aircraft size and rotor radius, and chose aeroshell/lander
 - Anticipating growth of weight and power that are encountered in all aircraft development programs
 - Anticipating growth in requirements, especially payload weight
- Project manager and designer must recognize when a helicopter designed for constrained size is near limits of technical feasibility
 - Limit indicated by accelerating growth of aircraft size as function of mission parameters or design uncertainty
 - Examined impact of mission: payload, range, hover time
 - Examined impact of uncertainty: contingency weight; fuselage, motor, or control weight
- Conclusion: feasible designs exist that are more capable (range and hover time), and also more conservative (larger contingency weight)
 - Gross weight ~30 kg, rotor solidity = 0.25
- Or larger aeroshell and lander, enabling larger rotors and aircraft

Potential Capability of Mars Science Helicopter

Trade design payload for battery weight (total energy)

Hexacopter, rotor radius = 0.64 m atmosphere: 0.015 kg/m³, -50°C gross weight = 31.2 kg, power = 6.2 kW

Potential Capability of Mars Science Helicopter

Design for payload = 8 kg, then reduce payload or swap for batteries

Hexacopter, rotor radius = 0.64 m atmosphere: 0.015 kg/m³, -50°C

gross weight = 31.2 kg, power = 6.2 kW

Advanced Mars Helicopter Scout

Apply improved design features to helicopter same size and configuration as Mars Helicopter demonstrator

coaxial helicopter, radius = 0.605 m

		MH demo	Advanced MHS
design C_T/σ		0.10	0.115
design M _{tip}		0.7	0.8
cruise speed	m/sec	2	30
payload	kg	0	1.3
	km	0.18 km OR	2 km AND
range			
hover time	min	1.5 min	2 min
rotor radius	m	0.605	0.605
gross weight	kg	1.8	4.6
solidity		0.148	0.248
total power	kW	0.36	0.88
battery	Ah	12	46

